State complexity of complementing unambiguous finite automata

Michael Raskin, raskin@mccme.ru

LaBRI, Université de Bordeaux

July 10, 2018

Non-determinism in automata

The basic classes: deterministic and non-deterministic finite automata

The set of languages is the same

State complexity (number of states required) differs

Non-determinism in automata: state complexity

Automata languages

$$\textit{L}(DFA) = \textit{L}(NFA)$$

Non-determinism in automata: state complexity

Automata languages

$$L(DFA) = L(NFA)$$

Exponentially more succinct

Non-determinism in automata: state complexity

Automata languages

$$L(DFA) = L(NFA)$$

Exponentially more succinct

Intersection, union Quadratic state complexity

Complement

No extra cost

Exponential state complexity

Reversing direction (left to right/right to left) No extra cost

Exponential state complexity

Codeterministic automata

coDFA: DFA reading the word right-to-left

Union/intersection between DFA and coDFA — exponential state complexity (if we want to stay in DFA ∪ coDFA)

Unambiguous automata

Complementing UFA

- Known to be at least quadratic
- Lower bound holds for unary case
- Conjectured to be polynomial

 State complexity of complementing UFA: superpolynomial lower bound

- State complexity of complementing UFA: superpolynomial lower bound
- Even in unary case
- Even if complement is general NFA
- Even if language is also easy for DFA with multiple passes

- State complexity of complementing UFA: superpolynomial lower bound
- Even in unary case
- Even if complement is general NFA
- Even if language is also easy for DFA with multiple passes

Very weakly superpolynomial lower bound: $n^{\Omega(\log \log \log n)}$

- State complexity of complementing UFA: superpolynomial lower bound
- Even in unary case
- Even if complement is general NFA
- Even if language is also easy for DFA with multiple passes

Very weakly superpolynomial lower bound: $n^{\Omega(\log\log\log\log n)}$

A lower bound for complementing a unary UFA **must** be weak: upper bound $n^{O(\log n)}$ (Dębski, 2017)

Why?

Direct construction

Simple Chrobak normal form:

unary NFA := collection of cycles C_1, \ldots, C_n

Input word \equiv length \equiv remainder modulo $lcm(|C_1|, \dots, |C_n|)$

Why? Tournaments!

Input word \equiv remainder modulo lcm of cycle lengths

Remainder 0 not in language; separation instead of complement Square-free cycle lengths

Unambiguity:

Remainder 0 modulo $\gcd(|\mathcal{C}_i|, |\mathcal{C}_j|)$ rules out acceptance by \mathcal{C}_i or by \mathcal{C}_j

 C_i yields to C_j : remainder 0 modulo $gcd(|C_i|,|C_j|)$ rules out acceptance by C_i

Tournament of yielding between cycles

Why? Tournament properties

Bad case: Everyone yields to C_1 , remainder 0 modulo C_1 separates

Good case: Every small set of cycles yields to some other cycle

Random tournament: good case

Why?

 $\mathsf{Input} \equiv \mathsf{remainder}$

Tournament: Yielding between cycles

Random tournament is good

Technical details: tournament of yielding can be controlled

Lower bound for construction

Separation \approx proof of non-inclusion \approx bad remainder for some modulo A proof of non-inclusion proves that every cycle yields

No small dominating set: many independent edges among the chosen

Lower bound for construction

A proof of non-inclusion proves that every cycle yields No small dominating set: many independent edges among the chosen

Choice of accepting states: *gcd*, corresponding to a chosen edge, divides separating modulo

Careful assignment of prime factors

A lot of different gcd's divide the length of a cycle \Rightarrow superpolynomial size

Future directions

- Non-unary case: is the state complexity exponential? Hypothesis: at least $2^{n^{\Theta}(1)}$
- Unary case: is the state complexity $n^{\Theta(\log n)}$?
- DFA × coDFA: studied as transducers (bimachines) how do automata behave?

Thanks for your attention.

Questions?