Writing a best-effort portable code walker in Common

Lisp

Michael Raskin, raskin@mccme.ru

LaBRI, Université de Bordeaux

April 2017

Michael Raskin, raskin@mccme.ru (LaBRI) Portable Common Lisp code walking April 2017 1/24



Code walking: what and why

Code walker
- a tool for code analysis and transformation
- enumerates all the subforms in the code
Why?
Code is data is code (so why not)
Metaprogramming: Write programs that write programs
Macros
- Write programs that rewrite programs!

Michael Raskin, raskin@mccme.ru (LaBRI) Portable Common Lisp code walking April 2017



Code walking: what and why

Code walker
- a tool for code analysis and transformation
- enumerates all the subforms in the code
Why?
Code is data is code (so why not)
Metaprogramming: Write programs that write programs
Macros
- Write programs that rewrite programs!

Michael Raskin, raskin@mccme.ru (LaBRI) Portable Common Lisp code walking April 2017



Code walking: what and why

Code walker
- a tool for code analysis and transformation
- enumerates all the subforms in the code
Why?
Code is data is code (so why not)
Metaprogramming: Write programs that write programs
Macros
-+ Write programs that rewrite programs!

Michael Raskin, raskin@mccme.ru (LaBRI) Portable Common Lisp code walking April 2017



Is code walking used in Common Lisp?

© iterate
What else?
© CL-Web
- CL-Cont
* Weblocks
* hu.dwim.walker
- local-variable-debug-wrapper
© macroexpand-dammit
- sexml
- fn
© temporal-functions
* trivial-macroexpand-all

- Some implementations include code walking libraries
Papers with a placeholder for some implementation-specific function
This may be close to a complete list...

Michael Raskin, raskin@mccme.ru (LaBRI) Portable Common Lisp code walking April 2017 3/24



Is code walking used in Common Lisp?

© iterate
What else?
CL-Web
- CL-Cont
* Weblocks
* hu.dwim.walker
- local-variable-debug-wrapper
© macroexpand-dammit
- sexml
- fn
© temporal-functions
* trivial-macroexpand-all

- Some implementations include code walking libraries
- Papers with a placeholder for some implementation-specific function
This may be close to a complete list...

Michael Raskin, raskin@mccme.ru (LaBRI) Portable Common Lisp code walking April 2017 3/24



A use of code walking: fn

Why use a code walker: a small example

(fox (+ _ ) -+ (lambda () (+ _ _))

(fnx (+ _ _1)) + (lambda (_ _1) (+ _ _1))

(fn* (subseq _@ 0 2)) -+ (lambda (&rest _@) (subseq _@ 0 2))
A+ _ _1D -+ (lambda (_ _1) (+ _ _1))

from README of public domain fn library by Chris Bagley (Baggers)

Code walking is used to find argument names (not quoted symbols or
function names or local variables)

4/24

Michael Raskin, raskin@mccme.ru (LaBRI) Portable Common Lisp code walking April 2017



Are there reusable code walking libraries?

Implementation-supplied libraries
Implement exactly what they promise — correctly
- API differs

hu.dwim.walker
Reader conditionals
Bit rot in the code for some of the implementations
Removes macrolet from code

macroexpand-dammit
Portable

- Correctness problems

- - Some of them avoidable
Removes macrolet from code

Michael Raskin, raskin@mccme.ru (LaBRI) Portable Common Lisp code walking April 2017



Is a portable code walker possible in Common Lisp?

Functionality we can specify: a macroexpand-all function

Like macroexpand, but also expand subforms
Should take a lexical environment object as the second parameter (for
local macros)

Michael Raskin, raskin@mccme.ru (LaBRI) Portable Common Lisp code walking April 2017 6/24



Is a portable macroexpand-all function possible in

Common Lisp as defined by ANSI?

Michael Raskin, raskin@mccme.ru (LaBRI) Portable Common Lisp code walking April 2017 7/24



Is a portable macroexpand-all function possible in

Common Lisp as defined by ANSI?

No

Michael Raskin, raskin@mccme.ru (LaBRI) Portable Common Lisp code walking April 2017 7/24



Portable macroexpand-all function is impossible:

environments

Macro expansion functions have access to lexical environment
Can use environment to call macroexpand-1 on arbitrary forms

Very powerful feature — even more than it seems

Michael Raskin, raskin@mccme.ru (LaBRI) Portable Common Lisp code walking April 2017



Tricks with environment

(defmacro depth-limit (max &body body &environment env)
(let*
((depth-value (macroexpand-1 (quote (depth-counter)) env)]
(depth (if (numberp depth-value) depth-value 0)))
(if (> depth max)
(progn (format *error-output* "Too deep.~%") nil)
" (macrolet ((depth-counter () ,(1+ depth))) ,@body))))

(depth-limit O (list (depth-limit 1 :test)))
(depth-limit O (list (depth-limit O :test)))

No code-walking!

Michael Raskin, raskin@mccme.ru (LaBRI) Portable Common Lisp code walking April 2017 9/24



(macrolet
((with-gensym ((x) &body body)
“(macrolet ((,x O '',(gensym))) ,@body)))
(with-gensym (f1) (with-gensym (£2)
(defmacro set-xl1 (value &body body)

“(macrolet ((,(f1) () ,value)) ,@body))
(defmacro set-x2 (value &body body)

“(macrolet ((,(£2) (O ,value)) ,@body))
(defmacro read-x1-x2 (&environment env)

“(1ist ', (macroexpand-1 ~(,(£f1)) env)
', (macroexpand-1 ~(,(£2)) env))))))

(defmacro expand-via-function (form &environment e)
*', (macroexpand-all (quote ,form) ,e))

(set-x1 1 (set-x2 2
(expand-via-function
(set-x2 3 (read-x1-x2)))))

Michael Raskin, raskin@mccme.ru (LaBRI) Portable Common Lisp code walking

April 2017 10/24



Portable correct environment handling is impossible

macroexpand-all doesn't see the names of temporary macros
Lexical environment: pass it as is or build a new one from scratch

You cannot create an entry with the name you do not know

Michael Raskin, raskin@mccme.ru (LaBRI) Portable Common Lisp code walking April 2017

11/

24



Portable correct environment handling:

ANSI CL and «Common Lisp: the Language» (2nd edition)

«Common Lisp: the Language» has functions to inspect and modify lexical
environment objects — enough for code walkers

What the non-portable code walkers actually do: expand in the given
environment, add new entries as needed when descending into special
forms

An alternative option: inspect the initial lexical environment, build new
lexical environments, put the entries extracted from the original
environment there

In ANSI Common Lisp standard the lexical environment objects are almost
completely opaque

Michael Raskin, raskin@mccme.ru (LaBRI) Portable Common Lisp code walking April 2017 12 /24



Portable correct environment handling:

ANSI CL and «Common Lisp: the Language» (2nd edition)

«Common Lisp: the Language» has functions to inspect and modify lexical
environment objects — enough for code walkers

What the non-portable code walkers actually do: expand in the given
environment, add new entries as needed when descending into special
forms

An alternative option: inspect the initial lexical environment, build new
lexical environments, put the entries extracted from the original
environment there

In ANSI Common Lisp standard the lexical environment objects are almost
completely opaque

Michael Raskin, raskin@mccme.ru (LaBRI) Portable Common Lisp code walking April 2017 12 /24



Portable correct environment handling:

ANSI CL and «Common Lisp: the Language» (2nd edition)

«Common Lisp: the Language» has functions to inspect and modify lexical
environment objects — enough for code walkers

What the non-portable code walkers actually do: expand in the given
environment, add new entries as needed when descending into special
forms

An alternative option: inspect the initial lexical environment, build new
lexical environments, put the entries extracted from the original
environment there

In ANSI Common Lisp standard the lexical environment objects are almost
completely opaque

Michael Raskin, raskin@mccme.ru (LaBRI) Portable Common Lisp code walking April 2017 12 /24



Portable correct environment handling:

ANSI CL and «Common Lisp: the Language» (2nd edition)

«Common Lisp: the Language» has functions to inspect and modify lexical
environment objects — enough for code walkers

What the non-portable code walkers actually do: expand in the given
environment, add new entries as needed when descending into special
forms

An alternative option: inspect the initial lexical environment, build new
lexical environments, put the entries extracted from the original
environment there

In ANSI Common Lisp standard the lexical environment objects are almost
completely opaque

Michael Raskin, raskin@mccme.ru (LaBRI) Portable Common Lisp code walking April 2017 12 /24



More troubles: expanding standard macros

Let's expand the defun macro..
(defun £ (x) x)

(progn

(eval-when (:compile-toplevel)
(sb-c:%compiler-defun 'f nil t))

(sb-impl::%defun 'f

(function (sb-int:named-lambda f(x) (block f x)))
(sb-c:source-location)))

Using SBCL as an example — most implementations do that

Special operator function as described in the standard can’t handle this;
portable walker needs to deal with different named-lambda symbol names
Unclear if the standard intended to allow this

Michael Raskin, raskin@mccme.ru (LaBRI) Portable Common Lisp code walking April 2017



More troubles: expanding standard macros

Let's expand the defun macro..
(defun £ (x) x)

(progn

(eval-when (:compile-toplevel)
(sb-c:%compiler-defun 'f nil t))

(sb-impl::%defun 'f

(function (sb-int:named-lambda f(x) (block f x)))
(sb-c:source-location)))

Using SBCL as an example — most implementations do that

Special operator function as described in the standard can’t handle this;
portable walker needs to deal with different named-lambda symbol names
Unclear if the standard intended to allow this

Michael Raskin, raskin@mccme.ru (LaBRI) Portable Common Lisp code walking April 2017



More troubles: expanding standard macros

Let's expand the defun macro..
(defun £ (x) x)

(progn

(eval-when (:compile-toplevel)
(sb-c:%compiler-defun 'f nil t))

(sb-impl::%defun 'f

(function (sb-int:named-lambda f(x) (block f x)))
(sb-c:source-location)))

Using SBCL as an example — most implementations do that

Special operator function as described in the standard can’t handle this;
portable walker needs to deal with different named-lambda symbol names
Unclear if the standard intended to allow this

Michael Raskin, raskin@mccme.ru (LaBRI) Portable Common Lisp code walking April 2017 13 /24



More troubles: expanding standard macros

Let's expand the defun macro..
(defun £ (x) x)

(progn

(eval-when (:compile-toplevel)
(sb-c:%compiler-defun 'f nil t))

(sb-impl::%defun 'f

(function (sb-int:named-lambda f(x) (block f x)))
(sb-c:source-location)))

Using SBCL as an example — most implementations do that

Special operator function as described in the standard can't handle this;
portable walker needs to deal with different named-lambda symbol names
Unclear if the standard intended to allow this

Michael Raskin, raskin@mccme.ru (LaBRI) Portable Common Lisp code walking April 2017 13 /24



More troubles: expanding standard macros

Let's expand the defun macro..
(defun £ (x) x)

(progn

(eval-when (:compile-toplevel)
(sb-c:%compiler-defun 'f nil t))

(sb-impl::%defun 'f

(function (sb-int:named-lambda f(x) (block f x)))
(sb-c:source-location)))

Using SBCL as an example — most implementations do that

Special operator function as described in the standard can't handle this;
portable walker needs to deal with different named-lambda symbol names
Unclear if the standard intended to allow this

Michael Raskin, raskin@mccme.ru (LaBRI) Portable Common Lisp code walking April 2017 13 /24



Agnostic Lizard

Portable code walking is almost possible

Nobody! writes such code with expansions

- Apply heuristics to decide what environment to pass

defun (and defmethod) can be hardcoded
Not a complete solution — user could expand defun and use the result
- Apply heuristics to guess what style of function extension is used

Agnostic Lizard:
A code walker

No reader conditionals
Works fine unless a combination of bad events happens

11 did — for this talk

Michael Raskin, raskin@mccme.ru (LaBRI) Portable Common Lisp code walking April 2017 14 /24



Agnostic Lizard

Enumerates forms and calls callbacks:
:on-every-form-pre
:on-macroexpanded-form
:on-special-form-pre
:on-function-form-pre
:on-special-form
:on-function-form

:on-every-atom

:on-every-form . .
gitlab.common-lisp.net/

mraskin/agnostic-lizard

Callbacks can replace the form
Accepts hints about the names, the hints are checked

In QuickLisp; also on GitLab.Common-Lisp.net

Michael Raskin, raskin@mccme.ru (LaBRI) Portable Common Lisp code walking April 2017 15/24



Agnostic Lizard anatomy

Three main classes: metaenv, walker—-metaenv, macro-walker-metaenv

metaenv: basic walking context
Used to define metaenv-macroexpand-all

walker-metaenv: the same, plus callbacks

Code walking is implemented as macroexpand-all with callbacks and
an option to replace forms in the process

macro-walker-metaenv: the same, plus support for recursive macro
invocations instead of recursive expansion calls

Environment handling fully correct
- Some limitations on functionality

Michael Raskin, raskin@mccme.ru (LaBRI) Portable Common Lisp code walking April 2017 16 /24



Agnostic Lizard — possible future

Would be interesting to try applying to random code in QuickLisp
Not sure how to check correctness

Callback interface
| did use it for some call tracing
Had to expand it in the process..
Feature requests are treated with gratitude as advice

Michael Raskin, raskin@mccme.ru (LaBRI) Portable Common Lisp code walking April 2017 17 /24



Impact of environment-related extensions: summary

Let’s hope there are no new and creative defun expansion...

macroexpand-all and with-augmented-environment and more generic
code-walking
-+ Can be used to implement each other

Not much of a performance penalty

Environment inspection
Enough to implement macroexpand-all etc.
- Transformation uses eval — may be costly
More useful for other debugging tasks

Michael Raskin, raskin@mccme.ru (LaBRI) Portable Common Lisp code walking April 2017 18 /24



Using macroexpand-all for environment modification

(defmacro with-current-environment (f &environment env)
(funcall f env))

(macroexpand-all
“(let ((new-x nil))
(macrolet ((new-f (x) ~(1+ ,x)))
(with-current-environment , (lambda (e) ..))))
env)

Michael Raskin, raskin@mccme.ru (LaBRI) Portable Common Lisp code walking April 2017 19 /24



Constructing an environment given entries

(defmacro eval-with-current-environment
((var) &body code &environment env)
*', (funcall (eval ~(lambda (,var) ,@code)) env))

(defun with-metaenv-built-env (obj var code)
(eval
(metaenv-wrap-form
obj
" (eval-with-current-environment
(,var) ,@code))))

April 2017 20/24

Michael Raskin, raskin@mccme.ru (LaBRI) Portable Common Lisp code walking



Analyzing name roles in an environment

An operator in an environment can have:
- A visible global macro function
- A local macro function (possibly shadowing a global one)
- A local function shadowing a global macro definition
None of the above — no definition, or a function (local or global)
Doesn't matter which

Variables and symbol macros are similar but simpler

Michael Raskin, raskin@mccme.ru (LaBRI) Portable Common Lisp code walking April 2017 21/24



Pleas

Could we please agree on:

a common name and package name for named-lambda
(portable alternative using labels is in alexandria, a compiler macro
could expand to the current expansion, but failing that...)

a common package name for macroexpand-all
environment parameter handling can be checked
a common name and package for environment-inspection functionality

maybe just a common package name for «Common Lisp: the Language»
(2nd ed.) functionality not in the standard

most implementations provide most of the functionality already, but
package names differ

| don't ask to provide new functionality — just an alias for what exists

Michael Raskin, raskin@mccme.ru (LaBRI) Portable Common Lisp code walking April 2017



Pleas

Could we please agree on:

a common name and package name for named-lambda
(portable alternative using labels is in alexandria, a compiler macro
could expand to the current expansion, but failing that...)

a common package name for macroexpand-all
environment parameter handling can be checked
a common name and package for environment-inspection functionality

maybe just a common package name for «Common Lisp: the Language»
(2nd ed.) functionality not in the standard

most implementations provide most of the functionality already, but
package names differ

| don't ask to provide new functionality — just an alias for what exists

Michael Raskin, raskin@mccme.ru (LaBRI) Portable Common Lisp code walking April 2017



Pleas

Could we please agree on:

a common name and package name for named-lambda
(portable alternative using labels is in alexandria, a compiler macro
could expand to the current expansion, but failing that...)

a common package name for macroexpand-all
- environment parameter handling can be checked
a common name and package for environment-inspection functionality

maybe just a common package name for «Common Lisp: the Language»
(2nd ed.) functionality not in the standard

most implementations provide most of the functionality already, but
package names differ

| don't ask to provide new functionality — just an alias for what exists

Michael Raskin, raskin@mccme.ru (LaBRI) Portable Common Lisp code walking April 2017



Pleas

Could we please agree on:

a common name and package name for named-lambda
(portable alternative using labels is in alexandria, a compiler macro
could expand to the current expansion, but failing that...)

a common package name for macroexpand-all
- environment parameter handling can be checked
a common name and package for environment-inspection functionality

maybe just a common package name for «Common Lisp: the Language»
(2nd ed.) functionality not in the standard

most implementations provide most of the functionality already, but
package names differ

| don't ask to provide new functionality — just an alias for what exists

Michael Raskin, raskin@mccme.ru (LaBRI) Portable Common Lisp code walking April 2017



Pleas

Could we please agree on:

a common name and package name for named-lambda
(portable alternative using labels is in alexandria, a compiler macro
could expand to the current expansion, but failing that...)

a common package name for macroexpand-all
- environment parameter handling can be checked
a common name and package for environment-inspection functionality

maybe just a common package name for «Common Lisp: the Language»
(2nd ed.) functionality not in the standard

most implementations provide most of the functionality already, but
package names differ

| don't ask to provide new functionality — just an alias for what exists

Michael Raskin, raskin@mccme.ru (LaBRI) Portable Common Lisp code walking April 2017



Pleas

Just in case:

common-lisp-extensions

common-lisp-extensions:

common-lisp-extensions

common-lisp-extensions:

common-lisp-extensions
common-lisp-extensions

cltl2:parse-macro

:named-lambda

nfunction

:macroexpand-all

list-environment-names

:with-augmented-environment
:with-parent-environment

cltl2:function-information
cltl2:variable-information
cltl2:declaration-information

Michael Raskin, raskin@mccme.ru (LaBRI) Portable Common Lisp code walking

April 2017



Thanks for the attention

Questions?

mccme.ru (LaBRI) Portable Common Lisp code walking April 2017 24 /24



